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Abstract
Optical properties of asymmetrical multiple quantum wells for the construction
of quantum cascade lasers are calculated, and expressions for the electronic
states of asymmetrical multiple quantum wells are presented. The gain and
differential cross-section for an electron Raman scattering process are obtained.
Also, the emission spectra for several scattering configurations are discussed,
and the corresponding selection rules for the processes involved are studied;
an interpretation of the singularities found in the spectra is given. The electron
Raman scattering studied here can be used to provide direct information about
the efficiency of the lasers.

1. Introduction

In recent years, there has been considerable interest in asymmetrical multiple-quantum-
well systems, because many new optical devices based on intersubband transitions are
being developed. This feature could fulfil the need for efficient sources of coherent mid-
infrared radiation for application in several branches of science and technology, such as
communications, radar, optical electronics. For example, an intersubband Raman laser can be
built with a three-level system [1–4], in such a way that the required energy between the levels
can be obtained using a double or triple asymmetrical quantum well. These devices are made
with epitaxially grown GaAs/Alx Ga1−x As, x usually around 0.35, and InGaAs/AlInAs [5].
The system consists of two or three asymmetric GaAs wells separated by GaAs/AlxGa1−x As
barriers [6]. Also there are works in which the second-harmonic generation in a quantum
cascade laser for this kind of system is studied [7]; these processes are qualitatively too different
to the phenomena that we are studying in this paper.

It is important then to study such systems in order to determine their properties, and thus
properly predict their behaviour. Raman scattering is an ideal tool for this study, because
of its precision in the optical characterization of nanomaterials. The electronic structure
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of nanostructures can be studied through Raman scattering processes considering different
polarizations of incident and emitted radiation [8, 9]. This is the reason that Raman scattering
experiments are a powerful tool for the investigation of semiconductor nanostructures.

In this work, we present a model of electron Raman scattering (ERS) in asymmetrical
coupled multiple (double and triple) quantum wells, where an electron in the conduction band
of the first well undergoes an intersubband transition to a new energy level of the same well,
if the system is an asymmetrical double quantum well (ADQW), or a corresponding one to
the second well, if the system is an asymmetrical triple quantum well (ATQW), absorbing a
photon of energy h̄ωl (pump radiation); after that, the electron emits a photon of secondary
radiation of energy h̄ωs (laser radiation) carrying out an intersubband transition to the last
quantum well, which is of several widths [1–3].

The model used to obtain the electronic envelope functions and energy levels presents
little limitation, and the use of this model in the design of very precise and reliable laser
devices is common practice today; furthermore, the techniques for growing semiconductor
nanostructures allow the construction of quantum wells that present little, if any, difference
from an ideal quantum well structure [10].

There exist works in which the authors have presented simulations of an optically pumped
intersubband Raman laser realized in an artificial three-level system [11] using the density
matrix method with the object of showing that the Raman gain is not proportional to the
external pumping intensity. In our calculations it is not possible to obtain these results because
we used a one-particle model; however, we provide the theoretical framework needed to
calculate the condition for and efficiency of a tunable intersubband Raman laser, obtaining the
corresponding analytical expressions.

2. Electronic states

The problem of finding the stationary states of an electron in the envelope function
approximation in asymmetrical multiple-quantum-well systems leads us to solving the equation

{
∇2 +

2m∗

h̄2 [En − V (z)]

}
� = 0, (1)

where m∗ is the electron effective mass.
Let us now consider an asymmetrical multiple quantum well of rectangular shape grown

along the z-direction, where the origin of coordinates is located at l1, with 2i interfaces located
at z = l1 = 0; z = l2 = d1, z = l3 = l2 + b1, z = l4 = l3 + d2, . . . , z = l2i−1 = l2i−2 + bi−1,
z = l2i = l2i−1 + di , i being the number of coupled wells and i − 1 the number of interior
barriers. The widths of the wells are di , with d0 = 0, and the widths of the barriers are bi . The
height of the potential barrier V (z) and the effective masses m∗

i are given by

V (z), m∗
i =




V0, m∗
1, z < l1

0, m∗
2, l1 � z � l2

...
...

...

0, m∗
2, l2i−1 � z � l2i

V0, m∗
1, l2i < z.

The solution to equation (1) for i coupled asymmetrical quantum wells is formed of 2i + 1
envelope wavefunctions of the form
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� = exp[−ik⊥ · r⊥]

(Lx L y)1/2




A1 exp(γnz) + B1 exp(−γnz), z < l1

A2 cos(knz) + B2 sin(knz), l1 � z � l2

...
...

A2i cos(knz) + B2i sin(knz), l2i−1 � z � l2i

A2i+1 exp(γnz) + B2i+1 exp(−γnz), l2i � z

(2)

where k2
n = 2m∗

2

h̄2 En and γ 2
n = 2m∗

1

h̄2 [V0 − En].
By considering the continuity of � and (1/m∗

j)(∂�/∂z) at all the interfaces we can
calculate the constants A and B and the energy levels. In this work we are particularly
interested in semiconductor ADQW and ATQW, mainly because they are currently used in
the construction of infrared laser devices, which are made considering three levels in the
conduction band.

The explicit form of the constants A2i+1 and B2i+1 is too cumbersome to be given here,
and will be left out. The energy En for an ATQW is determined from the following secular
equation:

η1(d1)η1(d2)η1(d3) = η1(d1)η2(d2)η2(d3) exp[−2γnb2]

+ η1(−d2)η2(d1)η2(d3) exp[−γn(b1 + b2)]

+ η1(d3)η2(d1)η2(d2) exp[−γnb1], (3)

where

η1(d) = (1 − α2) sin knd + 2α cos knd, η2(d) = (1 + α2) sin knd.

As can be observed, for b1 → ∞ and b2 → ∞, we obtain the secular equation for an
uncoupled triple asymmetrical quantum well as follows:

η1(d1)η1(d2)η1(d3) = 0,

and for b2 → ∞ or d3 → 0 we obtain the equation for two coupled asymmetrical quantum
wells:

η1(d1)η1(d2) = η2(d1)η2(d2) exp[−2γnb1]. (4)

This equation can also be obtained if we make b1 → 0 or d1 → 0.
The total energy is given by (see equations (3) and (4))

En(k⊥) = En +
h̄2

2m∗
1(2)

k2
⊥ where En = h̄2

2m∗
2

k2
n . (5)

The physical parameters used for an asymmetrical multiple quantum well of
GaAs/Al0.35Ga0.65As are: V0 = 300 meV, m∗

1 = 0.096 me, m∗
2 = 0.0665 me (where me

is the free electron mass). In figure 1, the square of the envelope wavefunction and the energy
levels for an asymmetrical double quantum well are presented for the following configurations:
(a) d1 = 60 Å, d2 = 40 Å, b = 10 Å; and (b) d1 = 60 Å, d2 = 40 Å, b = 40 Å. This figure
shows that with the increase of the width of the barrier the wavefunction and the energy levels
become those of two isolated simple wells of distinct widths, and as the barrier width goes to
zero, the energy levels and the probabilities of occupation coincide with those of a single well
of width d1 + d2. When the barriers are bigger than 40 Å, the wells are practically uncoupled.
When the quantum wells are coupled there exist probabilities for the electron be in either of
the two wells, but the probability is greater for one of them. In the case of a symmetrical
multiple quantum well, the system remains coupled for barrier widths bigger than 100 Å; also
its wavefunctions are symmetrical.
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Figure 1. Double quantum well with d1 = 60 Å and d2 = 40 Å: (a) b = 10 Å, (b) b = 40 Å.

In figure 2 the energy levels and square of the envelope function for an asymmetrical triple-
quantum-well system with widths d1 = 50 Å, d2 = 20 Å and d3 = 40 Å are shown for the cases
(a) b1 = b2 = 10 Å and (b) b1 = b2 = 40 Å. For this case the coupling between wells is weaker
than for the double-quantum-well system, due to the number of barriers. However, if we want
to obtain a three-energy level system with specific values of the energy, it is theoretically easier
or simpler do this with a triple quantum well than with a double quantum well.

3. Electron Raman scattering

The differential cross-section (DCS) per unit solid angle for electron Raman scattering in a
volume V for incident light of frequency ωl and scattered light of frequency ωs is given by [12]

d2σ

dωs d�
= V 2ω2

s η(ωs)

8π3c4η(ωl)
W (ωs, es), (6)
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Figure 2. Triple quantum well with d1 = 50 Å, d2 = 20 Å and d3 = 40 Å: (a) b1 = b2 = 10 Å,
(b) b1 = b2 = 40 Å.

where η(ω) is the refraction index as a function of the radiation frequency, es(el) is the unit
polarization vector for the emitted secondary (incident) radiation, c is the speed of light in
vacuum and W (ωs, es) is the transition rate calculated according to Fermi’s golden rule:

W (ωs, es) = 2π

h̄

∑
f

|M|2δ(E f − Ei) (7)

where M is calculated in second-or third-order perturbation theory and has the form

Msl =
∑

a

〈b|Ĥs|a〉〈a|Ĥl|i〉
(Ei − Ea + i�a)

. (8)

|i〉 and | f 〉 are the initial and final states corresponding to the energies Ei and E f , |a〉 and |b〉
are the intermediate states with energies Ea and Eb, and �a and �b are the lifetimes.
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The Hamiltonian operator for the radiation field is of the form

Ĥr = |e|
m∗

√
2π h̄

V ωr
(er · p̂), p̂ = −ih̄∇ (9)

where Ĥr is in the dipole approximation with frequency ωr , r = l (s) indicates the incident
(secondary) radiation and m∗ is the electron effective mass in the conduction band [12–15].

The effect of reduced dimensionality on the free carrier absorption or emission has been
calculated in [16] and the selection rules for intraband and intersubband transitions are shown
there. As we can see, the selection rules for a Raman scattering process, given in [16], only
allow transitions due to emission or absorption of light if the polarization vector of radiation
is in the ez direction.

For the calculation of the differential cross-section given by equation (6) we should
evaluate the matrix elements that appear in equation (8). For the case of the radiation field,
using equation (9) and the corresponding wavefunctions for asymmetrical multiple quantum
wells, the following matrix elements are obtained:

〈�a|Ĥr |�b〉 = 〈�a| − ih̄(er · ez)
|e|
m∗

√
2π h̄

V ωr

∂

∂z
|�b〉 = −ih̄(er · ez)

|e|
m∗dr

√
2π h̄

V ωr
Tn′,n′′(i),

(10)

where

Tn′,n′′(i) = dr

(
β1〈�outside

a | ∂

∂z
|�outside

b 〉 + β2〈� inside
a | ∂

∂z
|� inside

b 〉
)

and

β1(2) = m∗
0

m∗
1(2)

; 1

m∗
0

= 1

m∗
1

+
1

m∗
2

; 1

dr
=

∑
i

1

di
.

The explicit form of these coefficients is again too cumbersome and therefore will be left out
of this discussion.

The Raman differential cross-section for a three-level system is calculated for an ATQW
or ADQW, using equation (6).

In the initial state we have an electron in the ground state of the conduction band and
a incident photon of energy h̄ωl , in such a way that (see equation (5)) Eg = hωl + E1(k⊥).
From the ground state the electron carries out a transition to the second intermediate state with
energy Eu = E3(k′

⊥).
From the second intermediate state the electron undergoes a transition toward the

first excited state, emitting the laser radiation as secondary radiation of energy h̄ωs; thus
El = h̄ωs + E2(k′′

⊥).
After a number of operations we can write the cross-section as[

d2σ

d� dωs

]
i

= σ0
ωs

ωl
|M0(i)|2 E2

0

[h̄ωl − h̄ωs + E1 − E2]2 + �2
f

,

where

M0(i) = E0
T2,3(i)T3,1(i)

h̄ωs + E2 − E3 + i�a
, σ0 = 4e4η(ωs)h̄� f

πm∗2

0 c4η(ωl)E2
0

|(el · ez)(es · ez)|2,

E0 = h̄2

2m∗
0d2

r

.
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Figure 3. Raman laser cross-section for an ADQW with different widths of the second well.

Finally, we computed the scattering efficiency for emission spectra of the electron Raman
laser scattering process. The lifetimes of the final and intermediate states are �a = � f =
3 meV.

The scattering efficiency has two peaks, a resonant one (h̄ω) and a non-resonant one (SL:
step-like), which are located in h̄ω = E3 − E2 and SL = h̄ωl + E1 − E2. The resonant peak
can only be observed if the incident radiation energy is such that the electron can reach E3;
however, for the other peak we only require that the incident radiation be such that the electron
reaches E2.

In figure 3 the emission spectra of the asymmetrical double quantum well with incident
radiation energy h̄ωl = 0.23 eV, width of the first well d1 = 60 Å, width of the barrier
b = 10 Å and three different widths of the second well d2 = 30, 40 and 50 Å are shown. For
these spectra we can appreciate that for bigger widths, a displacement of peaks toward bigger
energies occurs and with the increase of the width of the second well the efficiency diminishes.

Figure 4 shows the Raman laser cross-section for different widths of the barriers: (a) double
quantum well; (b) triple quantum well. In figure 4(a) we can see that an increase of the barrier
width in the double quantum well only changes the position of the non-resonant peak, which
is due to the E2 and E3 levels changing by practically the same amount. In figure 4(b) we can
see that the increase of the barrier widths in the triple quantum well changes the position of
the two peaks, which is due to E2 increasing and E3 diminishing.

In figure 5 the emission spectra for an asymmetrical triple quantum well are shown. In this
figure the well widths, d1 and d3, and the barrier widths are kept fixed and three different values
of the second well width, d2, are taken, which permits us to adjust the secondary-radiation
frequency. The behaviour of this figure is very similar to that obtained for the asymmetrical
double quantum well; however, the efficiency is smaller, due to this one having two barriers.

4. The net Raman gain of the asymmetrical multiple quantum wells

We have obtained that for a three-energy-level system, like asymmetrical double and triple
quantum wells, if the energy levels are ordered according to the numbers n1 = 1, n2 = 2 and
n3 = 3, the incident and secondary energies are given by

h̄ωs = E3 − E2 and h̄ωl = E3 − E1;
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Figure 4. Raman laser cross-section for quantum wells with different barrier widths: (a) double
quantum well; (b) triple quantum well.

then,

h̄ωl − h̄ωs = E2 − E1.

If the energy of the incident radiation (optical pumping) is below resonance, this difference
is named detuning; then, taking into account the detuning δ of [2], defined as

δ = E3 − E1 − h̄ωl ,

we have

E3 − E2 = h̄ωs + δ and E2 − E1 = h̄ωl − h̄ωs.

The expression for the net Raman gain is defined in [2] and it involves the refractive index, the
optical pump intensity at frequency ωl , the line broadening, the population densities for the
electron states and lifetimes of the states, among other quantities.

In figure 6(a) the net Raman gain for the ADQW is plotted versus the barrier widths, for
three different widths of the second well. The gain obtained is similar to the result reported
in [2] (the authors used the transfer matrix method). In the figure it can be observed that with
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Figure 5. Raman laser cross-section for a triple quantum well with different widths of the second
well.

Figure 6. The gain for different barrier widths: (a) for an ADQW, (b) for an ATQW.
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Figure 7. The gain for different widths of the second well.

the increasing of the width of the second well, the maximum gain is obtained for a bigger
barrier. For figure 6(b) the gain for the ATQW is plotted; the results are similar to those
obtained in figure 6(a). However, in figure 6(b) two maximum gain peaks appear, which
is due to the fact that in this case we have three wells and two barriers. The second peak
is the same as that appearing for the ADQW and the first peak is due to the effect of the
third well.

Figure 7 shows the net Raman gain for three different widths of the first well with the same
barriers versus the second well width for the ADQW. This behaviour accords with the results
obtained in the other figures. However, we can note that when the widths coincide, d1 = d2,
the wells are symmetric and the gain is zero; it can also be observed that there are two peaks;
the first one is when d1 > d2, and the second one is when d1 < d2. This behaviour is due to
the fact that the transitions between states with the same parity are forbidden in a symmetrical
double couple quantum well.

5. Conclusion

In this work we have studied intersubband Raman scattering for a three-level system in a
multiple quantum well, specifically for double and triple asymmetrical quantum wells. For
this purpose, we use two different methods, obtaining similar results.

Taking into account the results obtained in the present work, we can say that for building
a tunable intersubband Raman laser based on multiple quantum wells it is theoretically more
efficient to use an asymmetrical double quantum well rather than an asymmetrical triple
quantum well; however, from the theoretical point of view, in an asymmetrical triple quantum
well it is easier to obtain and optimize the laser radiation frequency.
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